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The low recent numbers of  spring chinook spawners in the Snake River basin is a source
of concern to many. Their fate depends on their ability to withstand  many sources of
mortality in the future. Of particular interest to the PATH group is the chinook’s down-
river passage mortality through the dam systems of the Snake River and Columbia River.
We are interested in the degree to which passage mortality affects the fate of chinook. To
address this issue,  we develop a prospective analysis of chinook abundance for seven
populations of the Snake River basin. The prospective analysis is the result of three
workshops devoted to the issue in which several PATH members contributed substantial
data, ideas, and concepts to the development of the current model and analysis.

Our evaluation of the fate of chinook takes into account two major kinds of uncertainties.
Firstly, there are many alternative hypotheses about the dynamics of chinook and about
their past levels of mortality. Secondly, future of chinook will be affected by many types of
variability; some arising from basic stochasticity about the mean response of the
populations to changes in spawner levels, but others because of variability in down-river
passage mortality, and variability in harvest rates and other components of the chinook’s
returning up-river survival. We address both types of uncertainties in our analysis by
employing a Bayesian statistical approach to the problem. The Bayesian approach has
been found to be useful for many fisheries problems, as for example in the review paper by
Punt and Hilborn (1997).

The Bayesian approach allows for the calculation of the probability distribution for
alternative hypotheses about Chinook population dynamics by admitting uncertainty about
the fundamental parameters governing our model of their dynamics. The admission of
uncertainty extends over all 88 parameters of the model, which include parameters
describing common year-effects (such as some portion of ocean mortality) that affect all
analyzed chinook populations, parameters quantifying annual in-river passage mortality,
parameters affecting the shape of a generalized three-parameter spawner-recruit model,
and the overall process variance about the model.

Uncertainties about future events affecting chinook are addressed by development of a
population projection model which contains many sources of stochasticity. Stochasticity is
included foremost by the admission of a stochastic relationship between spawners and
resultant recruits and by the admission of uncertainty about fundamental parameters
governing their dynamics. Additional uncertainty is included by varying the time sequence
of  “year-effects”, the initial-condition spawning stock abundance, and the time sequence
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of  water transit times through the Columbia and consequent relation to in-river passage
mortality. A number of sensitivity analyses are also presented where structural changes are
made to either the input data or to the basic model framework.

Prospective analysis builds upon the model structures developed in the retrospective
analysis (Deriso, Marmorek, and Parnell 1996) . In particular, the maximum likelihood
models (MLE) developed in that paper provide a means to set up a Bayesian model
(BSM) for the current problem.  As in the MLE model, the current BSM model is based
on analysis of  spawner and recruitment data for thirteen spring/summer chinook stocks of
the Columbia River.  The model framework relies on a generalized Ricker spawner-recruit
model in which the generalization is the incorporation of an additional parameter to allow
for depensatory mortality at low spawning stock levels. Probability calculations are made
by  combining the generalized MLE model with a Monte Carlo Markov Chain (MCMC)
algorithm and a population projection model. The resultant model framework  produces
probability estimates of  stock recovery and survival as prescribed by the NMFS jeopardy
standard criteria listed in Appendix I.

Methods

Spring and Summer Chinook Salmon Populations Examined
(excerpt from Chapter 5)

Thirteen populations of Chinook salmon were analyzed in this study. They represent three
down-river subbasins — those of the Wind River, Klickitat River , and Warm Springs
River ; three populations in the John Day subbasin system — the John Day Main-stem,
John Day Middle Fork, and John Day North Fork; and seven up-river subbasins all
branching from the Snake River — those of the Imnaha, Minam, Bear Valley, Marsh
Creek, Sulphur Creek, Poverty Flats, and Johnson Flats Rivers. Those thirteen populations
represent the total number of populations on the lower to middle Columbia River system
and Snake River system for which time series of spawner and recruitment information
were available. Additional population time series are available for the Upper Columbia
River, which we plan to analyze in a future report. Table 1 summarizes the number of
main-river dams located below each river subbasin along with the number of years of
spawner and recruitment information available.

Each of these subbasins are described in  the report by Schaller and Petrosky (1996), and
in more detail in Petrosky et al. (1995).
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Table 1: Summary information on the thirteen chinook populations analyzed in this
study.

Sub-basin
Brood Years of Paired
Spawner-recruit Data

Number of Main-stem
Dams Below Sub-basin

1. Wind 1973 - 1990 1
2. Klickitat 1966 - 1990 1
3. Springs 1969 - 1990 2
4. John Day Mainstem
5. John Day Mid Fork
6. John Day North Fork

1959 - 1990
1959 - 1990
1959 - 1990

3
3
3

7. Imnaha 1952 - 1990 8
8. Minam 1954 - 1990 8
9. Bear Valley 1957 - 1990 8
10. Marsh Creek 1957 - 1990 8
11. Sulphur Creek 1957 - 1990 8
12. Poverty Flat 1957 - 1990 8
13. Johnson Flat 1957 - 1990 8

Bayesian Model (BSM)

The Bayesian model is a method in which a generalized Ricker spawner-recruit (S-R)
model is fitted to observations then population projections are made. The fitting of the
model and the projections of the model are linked together by probability distributions for
the parameters of the model, in which the distributions are based on the likelihood of the
observations.  The S-R model is described followed by a description of the method for
calculation of probability distributions, and then followed by a description of  the
population projection model. Basic data and likelihood method of fitting observations to
the model were described previously (Deriso et al. 1996).

Generalized Ricker Spawner-Recruit Model

The population model is based on Ricker type spawner-recruitment model, similar in
structure to the Ricker models used in Deriso et al. (1996), except generalized to allow
for depensatory mortality at low spawner levels, which can be written in generic form:

R=α β S(1+p) e -β S

Depensatory mortality occurs for low spawner values when p>0. The β and α parameters
represent benchmark spawner-inverse and recruitment values: when S=1/β and p=0 then
R=α e-1 , the maximum recruitment possible with the standard Ricker model. Therefore,
α is e1 times the maximum recruitment of a Ricker model.
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The  year and area-specific terms of the S-R model are better seen in the logarithmic form
of the model:

ln(Rt,i) = ai + δt - mt,i + ln (βi) + (1+p) ln (St,i) - βiSt,i + εt,i (1)

Where: Rt,i = observed returns (recruitment) originating from spawning in year t
and river sub-basin i,

St,i = observed spawning in year t and river sub-basin i,
ai = transformed Ricker α parameter, which depends on river sub-basin i,
βi = Ricker β  parameter, which depends on river sub-basin i,
mt,i = in-river passage mortality which depends on year t and river i,
εt,i = normally distributed mixed process error and recruitment

measurement error term N (0,Vε)
     p        =   depensation parameter (p > 0), and
     δ t    =    year-effect parameter in year t.

In-river passage mortality mt,i  is described by a two-level parameterization scheme as in
the MLE model:

mt,i = X*n + µt

where n is the number of first level dams, X is the dam passage mortality per first level
dam, and µt is the net dam passage mortality from the Snake River subbasins to John Day
dam expressed as an instantaneous mortality rate  for brood years t ≥ 1970. The µ term is
a “net” effect mortality estimate because it reflects the overall impacts of dam passage
over the complete life cycle, including the benefits of transportation by barge of some
Snake River smolts down-river to below the Bonneville dam. The first level (number n of
X’s in each row of Table 2 below) treats mortality as a process proportional to the number
of dams passed by a salmon during their transit to the ocean, excluding those dams and/or
populations treated in the second level. At the second level (Y in Table 2) the incremental
mortality experienced by upstream stocks is estimated by µt, which is usually estimated as
a positive values, but it can sometimes be a negative value as for example when net benefit
of barge transportation induces a total passage mortality below that experienced by down-
river populations. Mortality in any given year for any given population is obtained in Table
2 by adding the number of Xs (number of first level dams passed) plus a second level
annual term provided at least one Y is listed. A symbol is first listed on the diagram for a
given dam for the year of initial service (lagged two years to standardize to brood year).
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Table 2: Types of passage mortality estimates. (X = fixed estimate of mortality/dam; Y =
annually varying estimates of mortality due to passage through 5 dams; BON =
Bonneville; TDD = Dalles; JDA = John Day; McN = McNary; IHR = Ice Harbor;
LOMO = Lower Monumental; LGS = Little Goose; LGR = Lower Granite) (adapted
from Deriso et al. 1996).

D A M S

Brood Year BON TDD JDA McN IHR LOMO LGS LGR

1952 - 1954 X X
 1955 - 1958 X X X
 1959 - 1965 X X X X
 1966 X X X X X
 1967 X X X X X X
 1968 -1969 X X X X X X X
1970 - 1972 X X X Y Y Y Y
1973 - present X X X Y Y Y Y Y

The population model (1) contains the potential for depensatory mortality at low spawner
levels whenever (p>>0). In applications presented later, the likelihood of such mortality is
quite low. A weakness of this approach is that the likelihood only evaluates the potential
for depensatory mortality within the range of observed data. It is possible that at spawning
levels below those observed in the past, depensation could occur. To address that
possibility, a further level of depensation was added to the model (1) for a sensitivity
analysis presented later. This additional depensation is modeled by assuming that
recruitment survival (as given by R/S ) declines below minimum observed spawning levels
at a rate different than that given in (1). Specifically, this possibility is written as the
equation,

R/S = R(as given in equation 1)* (S/Smin)
d for S < Smin .

Figure 1 (a, b) show the different types of spawner-recruitment curves one obtains as the
parameter d is varied. When d is set to zero then we  obtain the original model (1).
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R/S as function of depensation 
Johnson Creek parameters (µ=2)
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Figure 1(a): Recruitment survival (R/S)  at low numbers of spawners for Johnson Creek.
Spawner-recruit parameters are MLE estimates with parameter µ set to 2.0.
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Figure 1(b): Recruitment at low numbers of spawners for Johnson Creek. Spawner-recruit
parameters are MLE estimates with parameter µ set to 2.0.
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Minimum observed spawning levels during years in which the likelihood function is
calculated are given later in Table 5 along with other quantities of interest.

Bayesian Structure

Bayesian statistical conclusions about the probability of future events rely on two
components: (1) probability statements about the parameters governing the population
dynamics process; (2) probability statements about the population projections into the
future conditional on a given set of parameter values. The first component, probability
statements about parameters, is given by the posterior probability p(θ | data) of the
parameters, which is proportional to the likelihood p(data | θ ) of the observed data  and
the prior distribution p(θ ) for the parameters. In particular,

p(θ |data) ∝  p(θ ) p(data|θ )

where the parameter vector θ contains 88 parameters for the application in this paper,
which are δ‘s (year-effects) for brood years 1952-1989, µ’s (Snake River to John Day
passage mortality) for brood years 1970-1990, river-specific S-R parameters a, β , plus a
first-level dam mortality parameter, the depensation parameter  p, and a process error
variance Vε. Those parameters are all implemented in the Bayesian analysis as written in
equation (1), except for the S-R parameters (β, p) and process error variance Vε which are
written on logarithmic scale. Note that the arithmetic scale chosen for the passage
mortalities allows those parameters to take on either positive or negative values so that it
is feasible (although it seldom occurred in application) that in some projected years,
passage mortality actually benefits the population.

The uniform probability distribution U(-∞, ∞) is used for the prior distribution for all
linear parameters (linear as described below); uniform U(-12,12) were used for prior
distributions for the other parameters, where the number “12” is sufficiently large to allow
parameters to span a range of meaningful values. The likelihood function for the problem
is described in our retrospective paper; briefly, it is the normal likelihood function
associated with equation (1). The second component to the Bayesian approach, regarding
population projections, is described in detail below.

The two components interact in the following manner. First a random sample is drawn
from the posterior probability of the parameters. A 100-year population projection is made
with those parameters. Several annual sources of variation are introduced in that
projection, as described later in the paper. This two-step process (select parameter from
posterior then project) is repeated several thousands of times to insure good coverage of
the posterior distribution and random distributions used in the projections.

The MCMC algorithm designed for this analysis takes advantage of the partial linear
structure of the model. In particular, the year-effects parameters, the passage mortality
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rate parameters, and the  S-R model a parameters occur linearly in the model. A two-step
MCMC algorithm was constructed so that Gibbs steps are taken for the linear parameters
(a conditional, multivariate normal posterior distribution is calculated) and Metropolis
steps (with normal jump functions) are taken for the other parameters (Gelman et al.
1995). The MCMC approach works by forming a Markov chain of parameter values
selected from the posterior distribution. The chain is calculated by stepping through the
parameter space to obtain updates of parameters, which form the next step of the chain.
The chain is updated 41,000 times in our application to insure good coverage of the
posterior distribution. The first 1000 chain steps are not used to calculate posterior
probabilities (the so-called “burn in” initialization period) and every 5th step thereafter is
used as a sample from the cumulative distribution functions of the posterior distributions.
Thus, 8000 samples are utilized. Several tests were made to insure convergence of the
chain with respect to calculation of jeopardy standards; good convergence is expected
because the model (1) could be written as a  linear model (conditional on Vε ) if not for the
log transformation applied to keep β and p  within biologically feasible ranges.

Population Projections Model

At present population projections are made for the seven Snake River chinook populations
listed in Table 1 (stocks indexed 7-13). An overview of the general structure of the model
is provided here. The projection model calculates posterior probabilities of survival and
recovery in accordance with NMFS jeopardy standards listed in Appendix I. Each
projection is made for 100 years beginning with 1996 as the first year of projection of
spawner abundance. The initial values required to initiate each projection are based on
projected age-specific returns for brood years beginning in 1991, except where actual
estimates of returns are available. In each projected year, spawners  St,i  are calculated as

St,i = Σa  ft,a,i  st,i Rt-a,i  (2)

in which  a fraction  ft,a,i  of  total recruitment Rt-a,i  produced in brood year t-a  returns in
year t,  and experiences an up-river survival to the spawning ground of  st,i ; the a
subscript denotes age and the i subscript denotes sub-basin. Age 3 year-olds of the
recruitment are not included in the spawning calculation because they are all males
whereas  the spawners in the model are taken to be an  index of female spawners.
Projected recruitment is based on equation (1) in which the “year-effects” and in-river
passage mortalities are selected according to the rules described below. The stochasticity
in the projections with equation (1) is smaller than characterized by the variance Vε

because of the removal of  measurement error, as described below. The 100 year
population projections are made 8000 times, one each for a sample from the posterior
probabilities of the parameters, as discussed in the Section above.

A description of each component of the population projection model follows below.
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Up-river survival of  Recruits: the st,i term in (2).

Many types of losses affect returning adults to the Columbia system. The losses can be
placed in three categories: (1) a conversion factor from Bonneville dam through Lower
Granite dam, which accounts for all non-fishery related losses of Snake River chinook
during their up-river passage, (2) an exploitation fraction, which is the total loss of
chinook due to in-river fisheries, (3) pre-spawn mortality, which accounts for non-fishery
losses between Lower Granite dam and spawning grounds. The product of the conversion
factor and (1 - exploitation fraction) and (1 - pre spawn mortality) equals up-river the
survival fraction st,i . The three components are addressed separately.

Estimates of conversion rates were provided by H. Schaller in the form of an Excel
worksheet and they are shown in Table 3. Based on analyses made by  C. Paulsen in his
memo dated Jan 6, 1997,  the conversion rates in the population projections were chosen
by random selection from  conversion estimates from recent years. By inspection of loess
regression plots, I decided to use the conversion estimates from the years 1985-1995 for
the base case. Within that 11 year time frame, there is no significant autocorrelation in
conversion estimates for Middle Fork or South Fork chinooks of the Snake River. More
recent estimates for 1996 have not been structured in the form of Table 3, but they
indicate a decline in conversion rates to values somewhat similar to the ones for 1995.

Table 3: Conversion rates for spring and summer chinook index stocks
              (H. Schaller, unpublished data in SPRPROSS11.XLS)

Year Minam
River

Imnaha
River

John Day
River(1)

Middle
Fork(2)

South
Fork(3)

Warm
Springs

Klickitat
River

Wind
River

1949
1950
1951
1952 1.000
1953 1.000
1954 0.585 0.680
1955 0.489 0.716
1956 0.264 0.622
1957 0.796 0.853
1958 0.831 0.794
1959 0.717 0.782 0.847 0.717 0.847
1960 0.826 0.866 0.909 0.826 0.906
1961 0.757 0.720 0.870 0.757 0.683
1962 0.589 0.611 0.857 0.589 0.633
1963 0.628 0.625 0.940 0.628 0.621
1964 0.557 0.591 0.898 0.557 0.625
1965 0.339 0.435 0.723 0.339 0.530
1966 0.639 0.634 0.953 0.639 0.628 0.953
1967 0.768 0.680 0.993 0.768 0.592 0.993
1968 0.814 0.726 0.960 0.814 0.639 0.980
1969 0.476 0.492 0.688 0.476 0.508 0.829 0.829
1970 0.636 0.646 0.857 0.636 0.655 0.926 0.926 0.926
1971 0.385 0.497 0.590 0.385 0.608 0.768 0.768 0.768
1972 0.409 0.459 0.678 0.409 0.509 0.824 0.824 0.824
1973 0.739 0.660 0.900 0.739 0.580 0.949 0.949 0.949
1974 0.279 0.425 0.519 0.279 0.572 0.720 0.720 0.720
1975 0.295 0.492 0.517 0.295 0.689 0.719 0.719 0.719
1976 0.330 0.510 0.543 0.330 0.691 0.737 0.737 0.737
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1977 0.685 0.646 0.856 0.685 0.607 0.925 0.925 0.925
1978 0.361 0.556 0.571 0.361 0.751 0.756 0.756 0.756
1979 0.410 0.568 0.692 0.410 0.726 0.832 0.832 0.832
1980 0.335 0.483 0.602 0.335 0.632 0.776 0.776 0.776
1981 0.577 0.566 0.750 0.577 0.556 0.866 0.866 0.866
1982 0.424 0.497 0.630 0.424 0.570 0.794 0.794 0.794
1983 0.526 0.561 0.846 0.526 0.596 0.920 0.920 0.920
1984 0.557 0.658 0.786 0.557 0.759 0.887 0.887 0.887
1985 0.735 0.754 0.913 0.735 0.773 0.956 0.956 0.956
1986 0.657 0.723 0.868 0.657 0.790 0.932 0.932 0.932
1987 0.745 0.654 0.897 0.745 0.562 0.947 0.947 0.947
1988 0.693 0.604 0.846 0.693 0.516 0.920 0.920 0.920
1989 0.476 0.584 0.712 0.476 0.693 0.844 0.844 0.844
1990 0.629 0.666 0.892 0.629 0.703 0.944 0.944 0.944
1991 0.488 0.587 0.787 0.488 0.686 0.887 0.887 0.887
1992 0.752 0.658 0.912 0.752 0.564 0.955 0.955 0.955
1993 0.743 0.810 0.899 0.743 0.877 0.948 0.948 0.948
1994 0.920 0.779 0.979 0.920 0.638 0.990 0.990 0.990
1995 0.538 0.637 1.000 0.538 0.737 1.000 1.000 1.000
(1)  John Day applies to Middle fork John Day, Mainstem John Day and North Fork John Day/ Granite Creek
(2)  Middle Fork Salmon applies to Bear Valley/ Elk, Marsh Creek, Sulphur Creek
(3)  South Fork Salmon applies to Poverty Flat and Johnson Creek

Columbia River and tributary harvest rates were applied to population projections in
accordance with the harvest rate policy followed by fishery management on the system.
Harvest rules are established for mainstem and tributary harvest rates as a function of
projected spawner abundance relative to MSP (maximum sustainable production) levels.
The rules were provided by H. Schaller along with MSP levels currently in use by
management, as listed below in Tables 4(a, b) and 5, respectively.  In the current version
of the model only Snake River populations are projected into the future and thus mainstem
harvest rules were applied only to their aggregate abundance (rather than for the
aggregate over down-river, up-river, and Snake River stocks). The rules differ by spring
runs and summer runs. The Imnaha stock is a mixed spring/summer run ; in the BSM half
of the population is treated as a spring run and half the population is treated as a summer
run. Tributary harvest rules are based on projected escapement from the mainstem harvest,
aggregated into spring chinook runs and summer chinook runs .

Table 4(a): Upriver Spring chinook Columbia River Fisheries Management Plan harvest
rate schedule. (H. Schaller, unpublished data in SPRPROSS11.XLS)

Run Size
% of MSP a/ b/

C.R. Mainstem
Harvest Rate

Tributary
Harvest Rate

< 22% 0.03 0
22%-44% 0.082 0
45%-112% 0.14 0
113%-125% 0.25 0.05
126%-175% 0.3 0.15
176%-200% 0.35 0.2
>200% 0.4 0.25

a/  run size adjusted for 77-90 average adult passage conversion and 90% pre-spawning survival
b/  average % of MSP for index stocks
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Table 4(b): Upriver Summer chinook Columbia River Fisheries Management Plan harvest
rate schedule. (H. Schaller, unpublished data in SPRPROSS11.XLS)

Run Size
% of MSP a/

C.R. Mainstem
Harvest Rate

Tributary
Harvest Rate

< 25% 0.02 0
25%-49% 0.05 0
50%-99% 0.1 0
100%-129% 0.15 0
130%-149% 0.2 0.05
150%-169% 0.25 0.1
170%-200% 0.3 0.2
>200% 0.35 0.25

a/  run size adjusted for 77-90 average adult passage conversion and 90% prespawning survival

Table 5: Maximum sustainable production (MSP)  and minimum observed
spawners (through brood year 1990) in numbers of spawners for spring and summer
chinook of the Snake River. ( MSP estimates provided by H. Schaller, unpublished data in
SPRPROSS11.XLS)

Sub-basin in Snake River MSP minimum

Bear Valley 1244 42
Marsh Creek 456 16
Sulphur Creek 333 12
Poverty Flat 3497 76
Johnson Creek 553 36
Imnaha River 1538 170
Minam River 810 41

Pre-spawning survival was assumed to equal 90% based on advice from the workshop
participants.

Autocorrelation of year-effects.

There is a significant first-order auto-correlation present in the MLE estimates of δ (the
year-effects parameters), as seen below in Figure 2. Regression of δ(t +1) versus δ(t) has
an R-square = 0.271 (significant at p=.0008).
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Year-effect autocorrelation. 1952-1990
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Figure 2: MLE estimates of  year-effect parameters, the δ’s, for 1952 - 1990.

The autocorrelation apparent in the year-effects parameters was captured  in the
population projections  by a type of  Markov process with empirical probability densities.
The method implemented in the model consists of the following steps: for each 100 year
population projection, a sample of the posterior density of the year-effect parameters is
made. From that sample,  MLE estimates are calculated for the multinomial probabilities
that characterize the sign of  a  δ, such as, P(x(t)>0 | x(t-1)>0). Given such a P vector then
each simulated year-effects follow the multinomial(P) for selection of positive and
negative values. The actual positive (negative) values selected are chosen at random from
the positive (negative) posterior sample of the year-effects selected for that particular 100
year projection.

Passage mortality relationship to water transit time WTT.

In our respective report, we showed that there was a weak correlation between WTT and
passage mortality. As a first step toward modeling the relationship between those
variables, I  investigate whether there is an autocorrelation process within the WTT series
themselves. The historical record of unregulated water transit times shows little
autocorrelative relationship. There is no significant first-order autocorrelation of
WTT(t+1) versus WTT(t) , R-square = 0.011 for the 1929-1990 data. This can be seen  in
the Figure 3 below.
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Unregulated WTT 1929-1990
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Figure 3: Unregulated WTT autocorrelation structure.

There is little structure revealed from a non-parametric view either: let w-bar be the
average WTT for all years, then the P(WTT(t+1)>wbar given  WTT(t)>wbar) = 0.467 and
P(WTT(t+1)>wbar given WTT<wbar) = 0.50 . The only bias problem associated with a
simple random selection of WTT year from the recent years is that there have been
relatively few above average WTT years recently. For example 38% of the WTT values
for 1972-1992 exceed wbar.

The relationship between  passage mortalities and WTT was modeled by a two-step
procedure.  Population projections affected by this procedure are those projections made
for the “recent condition” scenario, as defined in detail later in the paper, but it is one in
which passage mortalities from the 1978-1992 water years are utilized. For the “recent”
scenario, the first step of the procedure is random selection of WTT from the 1978-1992
period  in proportion to the empirical CDF of  long-term WTT’s (water years 1929-1992).
The method of selection is itself  made in two steps: (1) randomly choose a 0.33
probability interval with ending point 0.33 to 1.0 from the CDF of the long-term WTT’s;
(2) from the chosen interval, randomly select one of the years 1978-1992 whose CD value
falls within the chosen interval. For the selected year, the corresponding sample of the
posterior density of  in-river passage mortality is selected.

Maturity proportions.

 The proportion of recruits returning to a given population vary by sub-basin and age of
recruit, according to historical data. For each projected year, randomly selected
proportions were chosen from those estimated for historical data (brood years 1963-1993)
on each population. Those 31 historical years are the maximum number of historical data
years in common for all Snake River populations, except Poverty Flats which has 30 years
(no samples in 1984).
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Other details of the projection model are as follows:

• The process error variance was deflated to 61% of the posterior variance contained in
the likelihood function for the S-R data in order to account for confounding by
observation error. The 61% estimate is based on a partitioning of the residual sum of
squares (RSS) from the MLE analysis of Model (2) in our retrospective paper in
which spawning measurement error is modeled. From that analysis, the RSS of total
recruitment error is 76.4 and the RSS of spawning measurement error is 8.04. By
assuming the RSS of spawning measurement error equals recruitment measurement
error then the estimate 68.36  (=76.4-8.04) is the RSS for recruitment process error.
The ratio of this last RSS to the RSS for equation (1) is .61 (=68.36/112.4). For each
population and each projection year, a random process error is added to the logarithm
of the recruitment model (1). The error is chosen from a normal distribution with
mean 0 and variance selected from the posterior distribution of process error variance.

• Projections begin with the following initial conditions for the “recent condition”
scenario: estimates of spawners for 1991-1995 and recruits produced by those
spawners, where available. The estimates of spawners are multiplied by a 24% log-
normal random variable to account for measurement error.

A complete listing of the fortran code used for the population projections is listed in
Appendix II.

Jeopardy Standards

The jeopardy standard summary in Appendix I is used to guide development of
appropriate output calculations. Some interpretation is needed to place the standards on a
sound probability basis. With regards to the survival standard (item 1 of Appendix I), it is
straightforward to estimate the probability that a given population is above a given
threshold in any given year: one simply calculates the frequency of monte carlo projections
for which the population is above the threshold in that given year. By averaging those
probabilities over all projection years, one finds the average probability a given population
is above a given threshold over all projection years. This “average probability” is the item
(1c) for the 100-year projection time period; the 24-year time period is handled similarly.
Threshold values for each of the Snake River populations are listed below in Table 6.

The jeopardy standards require calculation of  the “average probability” for both recent
and historical conditions in the Columbia River. We chose the passage mortalities for
brood years 1976-1990 to represent recent conditions and we chose the passage
mortalities for brood years 1952-1969 to represent historical conditions. Other parameters
are not assumed to differ between scenarios, in particular, we assume that the δ year-
effects or up-river survivals will not depend on whether a scenario is for “recent
conditions” or “historical conditions”.
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Initial population conditions differ between scenarios. The “recent conditions” scenario
uses initial populations during the 1990’s as described earlier. The “historical conditions”
scenario were obtained by random selection from observed values for the 1957-1969
brood years.

Item 1d of Appendix I is the ratio of  “average probability” for the recent conditions
scenario relative to the historical conditions scenario. For example, a 90% ratio of average
probability for a given population and given threshold means that the average probability
for a “recent condition” scenario is 90% of the average probability for a “historical
condition” scenario.

The recovery standard (item 2 of Appendix I) is a standard based on the probability that
an eight-year geometric-mean of spawners is above a given threshold in a given projection
year; year 24 and year 48 probabilities are calculated. I calculated the average number of
spawners for each population for all years of data on pre-1971 brood years as specified in
Appendix I. The threshold values for the recovery standard are 60% of those historical
averages, rounded to the nearest 50 spawners (due to bin sizes used to output results).
The thresholds for both criterion are given in the table below. I went beyond the
requirements of the jeopardy standard and calculate the eight-year geometric-mean
spawners for both “recent condition” scenario and “historical condition” scenario. I also
provide the ratio of  probability for the “recent condition” scenario to probability for the
“historical condition” scenario so as to make the results of item 2 more comparable to
those in item 1.

Table 6: Survival and recovery thresholds prescribed the NMFS jeopardy standards for
Snake River spring and summer chinook index populations. Average spawners listed are
averages for all years of data prior to 1971 brood year.

Survival Recovery Historical
Standard Standard Average

Population Threshold Threshold Spawners

Bear Valley/Elk 300 950 1611
          Imnaha 300 900 1521
          Marsh Creek 150 450 735
          Minam River 150 500 823
          Poverty Flats 300 1150 1884
          Sulphur Creek 150 350 523
          Johnson Creek 150 350 589

Projections with Change in future in-river passage mortality

Management actions to increase the chances of Snake River population survival and
recovery can involve changes in future in-river passage mortality. A number of
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calculations were made to investigate consequences of changes in the in-river passage
mortality by either fixed incremental units or by fixed units subject to a constraint. In
previous PATH workshops this has been referred to as “change in mu” calculations, but
the results pertain to any management action which results in an incremental decrease in
the density-independent component of recruitment survival. In the projections, a fixed
incremental change was implemented by altering the “recent condition” scenario so that in
each  simulated year,  passage mortality m is replaced by m’  where

m’ = m - ∆

in which ∆ is the fixed increment change. In some simulated years, the fixed increment
change can be so large as to change the sign of m’ to a negative number. Such enhanced
production by salmon is considered unlikely by some PATH participants and thus a
sensitivity analysis was made in which the increments were constrained such that m’
always remains a non-negative number.  In both sets of calculations, there is a ten year
linear “ramp-up” of ∆  beginning in projection year 1 with an increment of 10% of ∆ and
linearly increasing to 100% in year 10 and thereafter.

Results of base case

Tables 7 (a - d) summarizes jeopardy standard probability results for the base case of the
BSM, which is the version described in previous Sections.  The NMFS Jeopardy
Standards in Appendix I are vague regarding specific quantification of the standards. If we
take the least stringent of the ones listed in Appendix I then the survival standard is
satisfied if 80% of the populations have a probability of at least 70% in the right-hand
column of Tables 7 (a, b). In Table 7(a)  14% (1 of 7) of the populations exceed 70%
probability ratio and in Table 7(b) 43% (3 of 7) of the populations  exceed 70%
probability ratio. Therefore, the survival standard is not satisfied. The least stringent
recovery standard is  satisfied if 80% of the populations have a probability of at least 50%
in the fourth column of Tables 7 (c, d).  None of the populations have a 50% probability
rate in Tables 7 (c, d) and therefore the recovery standard is not satisfied.

Jeopardy standards for survival and recovery can be met by making changes to passage
mortality. Figures 4 (a-d) show how the probabilities are affected by fixed incremental
changes in passage mortality. Reference lines are drawn on the graphs at roughly the mid-
point of the range of options listed in Appendix I for each standard. If one adopted those
mid-range reference values then some counter-intuitive results would occur: namely, the
lower mid-range value for the recovery standard has the effect of allowing the recovery
standard to be met at lower reductions in passage mortality than would be required for the
survival standard to be met. Results  similar  to those in Figures 4 (a-d) were obtained for
model simulations with constrained incremental changes; in those  graphs  replace fixed
∆ with average ∆  in which averaging takes place across all simulations of a given
proposed fixed increment scenario.
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Estimated posterior probability distributions for the 88 parameters are given in Table 8. As
seen in the Table, 90% posterior quartiles are quite large for most of the parameters,
which shows that the population projections are made over a wide range of parameter
values. Of particular interest is the negligible amount of depensation, listed in logarithms
as ln(p), estimated from the observed data. The wide range of parameter values used in
the projections lessens the sensitivity of jeopardy standard calculations to modest shifts in
MLE estimates of the parameters, as shown by the sensitivity results given below.

Sensitivity analyses

Four different variations to the “base case” were developed in order to examine sensitivity
of the results given above. The four models, along with the base case are more fully
described below:

1. Base Case
2. Depensation is assumed to occur below minimum observed spawner levels.

The model described in Figure 1 with depensation parameter d = 1.0 is applied.
3. Spawner measurement error was accounted for by application of model

number 2 in our retrospective report. Estimated spawner values from that
analysis were used instead of “observed” spawners – the data used in the base
case. Recruitment process error was rescaled in the run to produce the same
residual sum of squares as decided for the base case.

4. Age composition error was accounted for by application of the missing data
algorithm described by me in the accompanying document. Estimated
recruitment values from that analysis were used instead of  “observed”
recruitment – the data used in the base case. Recruitment process error was
rescaled in the run to produce the same residual sum of squares as decided for
the base case.

5. Year-effect parameters δ’s were set to zero. This model had a very favorable
BIC (Bayesian Information Criterion) score, as described in the recent paper by
Paulsen.

Results of the sensitivity analysis are summarized in Table 9.  The Table lists some
summary statistics from the analysis, although complete results are available to anyone on
request. Results in the Table show that the base case results are quite similar to results
obtained from models 2-4. Model 5, the no year-effect model, gives a substantially more
pessimistic view of the future of  Snake River chinook salmon.
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Figure 7 (a-d): Probability ratio for survival threshold standard and Probability for
recovery threshold standard.

Table 7(a). Average probabilities of spawners being above survival threshold
using 24 year simulation period.

Average probability of
Survival being above threshold Recent prob./

Area Threshold Historical Recent historical prob.
Imnaha 300 0.984 0.706 0.718
Minam 150 0.967 0.609 0.630
Bear Valley 300 0.993 0.576 0.581
Marsh Creek 150 0.980 0.478 0.488
Sulphur Creek 150 0.900 0.462 0.513
Poverty Flat 300 0.974 0.628 0.644
Johnson Creek 150 0.946 0.525 0.555

Table 7(b): Average probabilities of  spawners being above survival
Threshold using 100 year simulation period.
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Average probability of
Survival being above threshold Recent prob./

Area Threshold Historical Recent historical prob.
Imnaha 300 0.981 0.747 0.761
Minam 150 0.964 0.692 0.717
Bear Valley 300 0.992 0.718 0.724
Marsh Creek 150 0.979 0.637 0.651
Sulphur Creek 150 0.895 0.573 0.640
Poverty Flat 300 0.972 0.627 0.645
Johnson Creek 150 0.943 0.555 0.588

Table 7( c). Average probabilities of  spawners being above recovery
Threshold using 24 year simulation period.

Average probability of
Recovery being above threshold Recent prob./

Area Threshold Historical Recent historical prob.
Imnaha 850 0.945 0.280 0.297
Minam 450 0.884 0.196 0.222
Bear Valley 900 0.961 0.202 0.211
Marsh Creek 450 0.933 0.127 0.136
Sulphur Creek 300 0.833 0.166 0.200
Poverty Flat 850 0.904 0.147 0.163
Johnson Creek 300 0.926 0.202 0.218

Table 7(d). Average probabilities of being above recovery Threshold using
48 year simulation period.

Average probability of
Recovery being above threshold Recent prob./

Area Threshold Historical Recent historical prob.
Imnaha 850 0.945 0.292 0.309
Minam 450 0.880 0.211 0.239
Bear Valley 900 0.961 0.284 0.295
Marsh Creek 450 0.936 0.238 0.254
Sulphur Creek 300 0.822 0.220 0.268
Poverty Flat 850 0.906 0.154 0.170
Johnson Creek 300 0.925 0.215 0.232
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Table 8: posterior probability distributions for the 88 estimated parameters in the BSM
model.

highest posterior densities
(analogous to quartiles)

parameter 5% 25% median 75% 95%
a for area 1 6.397 6.71 7.087 7.405 7.66

a for area 2 6.99 7.389 7.805 8.126 8.383

a for area 3 8.804 9.316 9.837 10.236 10.556

a for area 4 7.539 7.904 8.351 8.748 9.066

a for area 5 7.948 8.361 8.843 9.24 9.557

a for area 6 9.017 9.515 10.062 10.498 10.847

a for area 7 8.904 9.736 10.344 10.969 11.776

a for area 8 8.39 9.242 9.833 10.44 11.258

a for area 9 9.177 9.948 10.612 11.219 12.197

a for area 10 8.586 9.394 10.056 10.642 11.665

a for area 11 8.068 8.921 9.524 10.119 11.008

a for area 12 8.782 9.627 10.224 10.847 11.615

a for area 13 7.821 8.677 9.268 9.859 10.75

δ for year 1952 -0.716 -0.006 0.493 1.003 1.725

δ for year 1953 -1.3 -0.585 -0.079 0.424 1.141

δ for year 1954 -1.42 -0.825 -0.426 -0.022 0.546

δ for year 1955 -0.744 -0.241 0.118 0.466 0.989

δ for year 1956 -1.243 -0.733 -0.388 -0.046 0.455

δ for year 1957 -0.48 -0.101 0.162 0.422 0.809

δ for year 1958 0.07 0.427 0.678 0.924 1.279

δ for year 1959 0.165 0.377 0.529 0.688 0.912

δ for year 1960 0.118 0.344 0.501 0.654 0.868

δ for year 1961 0.07 0.289 0.44 0.593 0.807

δ for year 1962 -0.274 -0.053 0.1 0.25 0.468

δ for year 1963 -0.402 -0.18 -0.027 0.125 0.339

δ for year 1964 -0.689 -0.469 -0.315 -0.164 0.057

δ for year 1965 -0.013 0.221 0.37 0.521 0.741

δ for year 1966 -0.178 0.015 0.152 0.288 0.484

δ for year 1967 0.225 0.46 0.631 0.799 1.036

δ for year 1968 0.751 1.046 1.261 1.473 1.779

δ for year 1969 -0.218 0.073 0.271 0.471 0.763

δ for year 1970 -0.683 -0.391 -0.181 0.031 0.316

δ for year 1971 -0.589 -0.284 -0.078 0.122 0.403

δ for year 1972 -0.556 -0.265 -0.057 0.147 0.433

δ for year 1973 -0.378 -0.102 0.086 0.271 0.544
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δ for year 1974 -0.701 -0.429 -0.244 -0.06 0.201

δ for year 1975 -0.882 -0.61 -0.419 -0.226 0.047

δ for year 1976 -1.056 -0.781 -0.582 -0.398 -0.117

δ for year 1977 -1.295 -1.022 -0.841 -0.653 -0.387

δ for year 1978 -0.936 -0.663 -0.479 -0.293 -0.023

δ for year 1979 -0.888 -0.625 -0.442 -0.257 0.008

δ for year 1980 -0.491 -0.215 -0.026 0.16 0.42

δ for year 1981 -0.831 -0.558 -0.373 -0.194 0.081

δ for year 1982 -0.445 -0.164 0.024 0.205 0.47

δ for year 1983 0.179 0.454 0.639 0.83 1.106

δ for year 1984 -0.168 0.101 0.286 0.468 0.744

δ for year 1985 -0.175 0.107 0.297 0.493 0.777

δ for year 1986 -0.707 -0.436 -0.25 -0.063 0.2

δ for year 1987 -0.95 -0.664 -0.463 -0.259 0.042

δ for year 1988 -0.231 0.073 0.28 0.484 0.784

δ for year 1989 -0.932 -0.654 -0.47 -0.281 -0.022

X dam effect -0.004 0.153 0.254 0.354 0.515

µ for year 1970 -0.387 0.143 0.509 0.867 1.404

µ for year 1971 0.746 1.274 1.651 2.021 2.535

µ for year 1972 1.315 1.851 2.226 2.596 3.116

µ for year 1973 -0.273 0.243 0.609 0.955 1.498

µ for year 1974 0.876 1.384 1.746 2.104 2.619

µ for year 1975 1.825 2.364 2.733 3.099 3.635

µ for year 1976 0.378 0.89 1.256 1.617 2.129

µ for year 1977 -0.088 0.416 0.771 1.127 1.634

µ for year 1978 0.62 1.12 1.479 1.839 2.34

µ for year 1979 0.348 0.874 1.232 1.597 2.113

µ for year 1980 -0.7 -0.17 0.191 0.551 1.072

µ for year 1981 -0.706 -0.189 0.175 0.528 1.034

µ for year 1982 -0.277 0.257 0.614 0.97 1.486

µ for year 1983 -0.427 0.101 0.457 0.823 1.339

µ for year 1984 0.714 1.242 1.606 1.969 2.515

µ for year 1985 1.205 1.73 2.093 2.453 2.985

µ for year 1986 0.125 0.647 1.016 1.378 1.882

µ for year 1987 0.916 1.455 1.836 2.208 2.759

µ for year 1988 0.984 1.506 1.874 2.249 2.774

µ for year 1989 0.767 1.297 1.67 2.034 2.536

µ for year 1990 1.852 2.381 2.749 3.114 3.649

ln β  area 1 -6.102 -5.859 -5.559 -5.291 -5.076

ln β  area 2 -6.768 -6.291 -6.011 -5.677 -5.381
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ln β  area 3 -8.008 -7.282 -6.951 -6.565 -6.146

ln β  area 4 -6.359 -6.168 -5.93 -5.622 -5.289

ln β  area 5 -7.229 -6.98 -6.724 -6.406 -5.981

ln β  area 6 -8.999 -8.234 -7.875 -7.443 -6.994

ln β  area 7 -7.953 -7.739 -7.471 -7.138 -6.65

ln β  area 8 -7.306 -7.107 -6.857 -6.536 -6.11

ln β  area 9 -8.692 -7.992 -7.676 -7.32 -6.791

ln β  area 10 -8.472 -7.457 -7.146 -6.816 -6.297

ln β  area 11 -7.122 -6.643 -6.4 -6.134 -5.671

ln β  area 12 -7.885 -7.655 -7.366 -6.984 -6.585

ln β  area 13 -7.21 -6.616 -6.349 -6.015 -5.649

ln(p) -11.672 -10.29 -8.492 -6.67 -4.828

ln(V) -1.178 -1.104 -1.035 -0.96 -0.893

Table 9:  Results of sensitivity analysis of jeopardy standard probability calculations to
alternative models. See text for description of the models implemented.

Model
1 2 3 4 5

 Probability Base Depensate Spawner Age Year-effect
average across stocks Case d = 1.0 error error δ = 0

24 year survival threshold 0.59 0.57 0.61 0.60 0.45
with ∆ = 0.4 0.68 0.66 0.70 0.69 0.56
with ∆ = 0.8 0.76 0.74 0.78 0.78 0.67

100 year survival threshold 0.68 0.65 0.71 0.69 0.50
with ∆ = 0.4 0.85 0.84 0.88 0.86 0.76
with ∆ = 0.8 0.92 0.91 0.94 0.92 0.87

24 year recovery threshold 0.19 0.17 0.23 0.19 0.05
with ∆ = 0.4 0.49 0.46 0.56 0.49 0.26
with ∆ = 0.8 0.78 0.75 0.84 0.79 0.62

48 year recovery threshold 0.23 0.22 0.29 0.23 0.07
with ∆ = 0.4 0.59 0.57 0.68 0.59 0.38
with ∆ = 0.8 0.84 0.83 0.89 0.84 0.75
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Appendix I: Spring/Summer Chinook "Jeopardy Standard" Summary (from C. Toole)

1. Survival Standard

     a.   Set threshold levels for each population.  BRWG
          estimates were used by NMFS for the following stocks:

          Population          Number of Spawners Annually
          Bear Valley/Elk               300
          Imnaha                            300
          Marsh Creek                   150
          Minam River                   150
          Poverty Flats                   300
          Sulphur Creek                 150

          Recently, Johnson Creek run reconstructions were
          completed.  According pers. comm. with Schaller,
          Petrosky, and Wilson:

          Johnson Creek                 150

     b.   Using simulation models, project population levels over
          24 years into the future and 100 years into the future.

     c.   Determine likelihood that each population will be above
          its threshold level over each of the two time periods.
          This is determined from the cumulative distribution of
          all simulations encompassing the time period.

          For example, if 500 simulations each projected
          population levels for a 100-year period, the resulting
          distribution would consist of 50,000 values.

     d.   Express probability in step c. as a proportion of
          probability of being above threshold during a
          historical period in which stocks were believed to be
          relatively healthy.  NMFS did not define this
          historical period, but accepted model results based on
          all available years prior to 1976 for the Biological
          Opinion.

          Estimation of the historical probability follows the
          same process described in step c., except the
          simulation model is calibrated only to observations
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          during the historical period.

     e.   NMFS’ jeopardy standard is that a "high percentage" of
          available populations must have a "high likelihood,"
          relative to the historical probability, of being above
          the threshold level over each time period.

          NMFS defined "high percentage" as 80% of available
          populations.

          NMFS did not define "high likelihood."  I suggest that
          70% be considered an approximation of this standard.
          Other PATH members have suggested reporting results for
          a range of probabilities between 70%-95%.

          For example:

          Probability    % of Stocks At or Above Probability
                              24-Year        100-Year
               0.70           _______        ________
               0.75           _______        ________
               0.80           _______        ________
               0.85           _______        ________
               0.90           _______        ________
               0.95           _______        ________

2.   Recovery Standard

     a.   Set recovery population level.  Relevant population
          recovery goal in NMFS’ "Proposed Recovery Plan" is
          eight-year geometric mean of annual redd counts
          equivalent to 60% of the pre-1971 brood-year average
          redd counts.  Although the NMFS draft recovery level is
          expressed as redd counts, analyses for the biological
          opinion converted these to estimates of number of
          spawners.

          Values used in previous analyses have changed for some
          stocks as the run reconstruction procedure has been
          refined.  The recovery levels should be calculated
          after the Petrosky et al. run reconstruction manuscript
          is completed, so that the "final" historical estimates
          are used.
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     b.   Using simulation models, project population levels 48
          years into the future.  [Note: 48 years is the proposed
          NMFS recovery standard.  Some PATH members would also
          like to see population projections 24 years into the
          future.]

     c.   Determine likelihood that the 8-year geometric mean of
          each population will be above its recovery level in the
          48th year of a simulation (i.e., geometric mean of
          years 41-48).  This is determined from the cumulative
          distribution of all simulations.

          For example, if 500 simulations each project an 8-year
          geometric mean population level for the 48th year of
          the simulation, the resulting distribution would
          consist of 500 values.

          [Note: Based on recommendation of some PATH members,
          probability should also be estimated for the 24th year
          of the simulation.]

     d.   NMFS’ jeopardy standard is that a "high percentage" of
          available populations must have a "moderate to high
          likelihood" of being above the recovery level within 48
          years.

          NMFS defined "high percentage" as 80% of available
          populations.

          NMFS did not define "moderate to high likelihood."  I
          suggest that 50% be considered an approximation of this
          standard.  It would be good to report results for a
          range of probabilities from 50-95% in a similar table
          to that described for threshold levels.

3.   Considerations For the Simulations

     NMFS commented on some of the assumptions used in
     simulations in our discussion of the jeopardy standard.
     Several of these comments are only pertinent to the specific
     simulation models used for biological opinion analyses
     (i.e., CRiSP vs FLUSH reach survival estimates) or to
     specific scenarios that were simulated (i.e., predator
     removal effectiveness).
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     One general consideration that would apply to any simulation
     model and any future scenario is NMFS’ conclusion that
     survival/recovery probabilities based on simulation models
     that include depensatory effects are more reasonable than
     those from models lacking such effects.  However, there is a
     substantial debate over the proper method of implementing
     depensation in life-cycle models, which Charlie Paulsen is
     tasked with laying out for PATH to review and, hopefully,
     resolve.  [My understanding, in a nutshell, is when SLCM
     included depensation in both the calibration and projection
     for biological opinion scenarios, the effect was very small
     for most stocks; i.e., results were similar to simulations
     in which depensation was not implemented at all.  ELCM
     included depensation in the forward projection only, and
     there was a greater difference between simulations with and
     without depensation.]  NMFS did not take a position on the
     best method.
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Appendix II: Fortran computer code for population projections.

subroutine project
$INCLUDE:’MARCOM.DAT’

character*12 srname
common /srlabel/ srname(406),indxsp(200,13),pmature(40,13,6)
common /readit/ recrt(200,13),spawn(200,13),gammay,gammae,ians
common /idone/ idonit,icatopt,iyrmx,iareamx,gamavg
common /save/ savest(100),fxn,ihistory,nspwn(50,100,0:10,5),

     &     zobs(mob),avgit(200,21),ihisflag,muflag
common /crisp/ riverm(200,13),icrisp
common /projec/ sdata(200,13),recage(200,13,6),conver(11,2)

     &                  ,hrule(9,2),urule(9,2,2)
common /pass/ prec(200,13),bcoef(13),rm(200,13)

     &            ,delt(200),strue(200,13),amean(13)
        common /depcom/ depen,spmin(13)
        dimension wttp(15),msp(7:13),rtemp(13),convert(2)
     &            ,msptot(2),rttot(2),utrib(13),umain(2)
     &            ,zjack(200,13),iwttp(15),iwtt(15)
        data wttp/.25,.313,.328,.344,.39,.406,.453,.468,.484,.64,.75,
     &            .765,.828,.844,.938/
        data iwttp/82,84,80,83,78,89,86,79,85,81,90,91,88,87,92/

data msp/1538,810,1244,456,333,3497,553/
c-- ihistory is looped 0,1,..,10 ; 0=historical scenario; 1=recent;
c--  2-10 are iterations on changing MU by fixed maximum increments

if(ihistory.ge.1) then
idum=idumsav

else
idumsav=idum

c-- ihisflag is flag; when =0 use 1957-1969 initial conditions; =1 use recent initial conditions
if(ihisflag.eq.0) ihisyr= 5.0 + 11.0*ran0(idum)    !used to initial historical scenario
idum=idumsav

endif
deltamu=0.2*(ihistory-1)      ! MU = MU +DELTAMU; maximum change allowed

c--go get parameters
call calcfg
p=exp(theta(87))

c-- year-effect parameters modeled as a Markovian process; find structure
c--select year for year-effect from coded year 1 to 39 (’52-’90)

pplus=0.0
pminus=0.0
plus=0.0
zminus=0.0
do 22 i=1,38
if(delt(i).ge. 0.0) then

plus=plus+1.
if(delt(i+1).ge. 0.0) pplus=pplus+1.

else
zminus=zminus+1.
if(delt(i+1).ge. 0.0) pminus=pminus+1.

endif
22      continue
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if(plus.gt. 0.) pplus=pplus/plus
if(zminus.gt. 0.) pminus=pminus/zminus

c-- zero vector and re-use it. Note it is in exponential form in this subroutine
do 1 i=1,200
do 1 j=7,13
zjack(i,j)=0.0

1       strue(i,j)=0.0
c--simulation begins
c--start in year 1991 calculate future returns. use rec input where available
c--start spawner calculations in 1996; first 5 years to initialize process

istart=1990-1951
do 10 isim=1,105
iyr=istart+isim
if(ihisflag.eq.0) ihisyr=ihisyr+1
iramp=isim-5

c-- ramp change in mu linearly over 10 years; dramp is maximum feasible
c-- change in mu for a given simulation year

if(iramp.gt.0 .and. iramp.lt.10) then
dramp=float(iramp)/10.*deltamu

else
dramp=deltamu
if(iramp.le.0) dramp = 0.0 ! don’t ramp during initial conditions

endif
c--select year for year-effect from coded year 1 to 39 (’52-’90)
c-- use Markov parameters given above to select year-effect

if(isim.gt.1) then
ptemp=ran0(idum)
if(delta.ge. 0.0) then

if(ptemp.le.pplus) then
15                      iselyr=1.0+(iyrmx)*ran0(idum)

dtmp=delt(iselyr)
if(dtmp.lt. 0.0) goto 15
else

12                      iselyr=1.0+(iyrmx)*ran0(idum)
dtmp=delt(iselyr)
if(dtmp.ge. 0.0) goto 12
endif

else
if(ptemp.le.pminus) then

13                      iselyr=1.0+(iyrmx)*ran0(idum)
dtmp=delt(iselyr)
if(dtmp.lt. 0.0) goto 13
else

14                      iselyr=1.0+(iyrmx)*ran0(idum)
dtmp=delt(iselyr)
if(dtmp.ge. 0.0) goto 14
endif

endif
else
iselyr=1.0+(iyrmx)*ran0(idum)
dtmp=delt(iselyr)
endif
delta=dtmp + 0.01  ! bias correction --see bayavg.out to see it works
if(ihistory.ne.0) then
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c--select mu from one of the 1976-present values. Note lag 2 for byr vs H2Oyr
c--- even up the selection wrt WTT years by using empirical WTT CDF 1929-92
c-- stored cdf and year in data arrays wttp and iwttp
                rtmp=0.33 + 0.67*ran0(idum)
                nhat=0
                do 25 i=1,15
                if(wttp(i).le.rtmp .and. wttp(i).gt. rtmp-.33) then
                nhat=nhat+1
                iwtt(nhat)=iwttp(i)
                endif
25              continue
                iselec= 1 + nhat*ran0(idum)
                iselec=iwtt(iselec)-51-2
c-- constrain delta mu

if(muflag.eq.0) then !flag to use mu-star approach or not
dtmp=dramp
else   ! constrains delta mu to keep from sign change on rmort
dtmp=dmin1(rm(iselec,7),dramp)
dtmp=dmax1(dtmp,0.0d0)
endif
rmort=rm(iselec,7) - dtmp

else
c--select mu from one of the 1969-1952

iselec= 1.0+(18.0)*ran0(idum)
rmort=rm(iselec,7)

endif
c-- calculate up-river survival

rttot(1)=0.0
msptot(1)=0
rttot(2)=0.0
msptot(2)=0

c---first get recruits to mouth adjusted for average losses upriver
c---note that recruits do not include the jacks (age 3’s)
c               and relative to MSP levels

do 30 iar=7,13
j=1
if(iar.gt.11) j=2  ! S fork
iy1=iyr
if(ihisflag.eq. 0 .and. ihistory.eq.0) iy1=ihisyr
if(isim.le.5) then

strue(iyr,iar)=sdata(iy1,iar)/.6  ! initial harvest conditions
endif
tmp=.659        ! 1977-1990 average conversion Sfork
if(j.eq.1) tmp=0.558 ! 1977-1990 average conversion mid Fork
rtemp(iar)= strue(iyr,iar)*tmp*0.9  ! 0.9 pre-spwn survival
rtemp(7)= strue(iyr,iar)*0.9*(.659+.558)/2.
if(iar.ne.7) then  !Imnaha is a combo su/sp and treated special
rttot(j)=rtemp(iar)+rttot(j)
msptot(j)=msptot(j) +msp(iar)
endif
utrib(iar)=0.0

30      continue
rttot(1)=(rttot(1)+0.5*rtemp(7))/(msptot(1)+0.5*msp(7))
rttot(2)=(rttot(2)+0.5*rtemp(7))/(msptot(2)+0.5*msp(7))
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c-- calculate conversion for BN to IH: randomly select from 1985-1995 estimates
iselec= 1.0+(11.0)*ran0(idum)
convert(1)=conver(iselec,1)
convert(2)=conver(iselec,2)

c-- apply exploitation; from harvest rules - mainstem  & tributary
umain(1)=0.0
umain(2)=0.0
do 41 iar=7,13
j=1
if(iar.gt.11) j=2
do 40 i=2,9
hrul1=hrule(i-1,j)
hrul2=hrule(i,j)
if(rttot(j).gt.hrul1.and. rttot(j).le. hrul2)

     &                  umain(j)=urule(i,j,1)
40      continue

do 44 i=2,9
hrul1=hrule(i-1,j)
hrul2=hrule(i,j)
rescape=rttot(j)*(1.0-umain(j))   ! trib harvest rules apply to escape
if(rescape.gt.hrul1.and. rescape.le. hrul2)

     &                  utrib(iar)=urule(i,j,2)
44      continue
41      continue
c-- calculate escapement and future recruits; note jacks don’t spawn
c-- "strue" variable is used for recruits and spawners

do 11 iar=7,13
j=1
if(iar.gt.11) j=2
conv=convert(j)
umai=umain(j)
utri=utrib(iar)
if(iar.eq.7) then   ! treat Imnaha as average

conv=(convert(1)+convert(2))/2.
umai=(umain(1)+umain(2))/2.
utri=(utrib(7)+utrib(13))/2.

endif
surviv=(1.0-umai)*(1.0-utri)*conv*0.9
iy1=iyr
if(ihisflag.eq.0 .and. ihistory.eq.0) iy1=ihisyr
if(isim.le.5) then              ! initial conditions

strue(iyr,iar)=sdata(iy1,iar)*(1.+znorm(idum)*.24)
else

strue(iyr,iar)=strue(iyr,iar)*surviv
c strue(iyr,iar)=(strue(iyr,iar)-zjack(iyr,iar))*surviv

endif
c-- add process error; the .600 shrinks process error because of measure err

epsilon=znorm(idum)*sqrt(exp(theta(88))*0.6)
if(strue(iyr,iar) .ge. 1.0) then
prec(iyr,iar)= dexp(amean(iar)+delta-rmort+epsilon)*bcoef(iar)

     &   *strue(iyr,iar)**(1.+p)/(1000.**p)
     &   *dexp(-bcoef(iar)*strue(iyr,iar) )
c-- depensation possible below min obs spawn
        if(strue(iyr,iar).lt.spmin(iar)) then
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        tmp=(strue(iyr,iar)/spmin(iar))**depen
        prec(iyr,iar)=prec(iyr,iar)*tmp
        endif

else
prec(iyr,iar) = 0.0
endif

c--calculate some averages for graphs etc
if(ihistory.ge.1) then
isim1=isim
if(isim.ge.15) isim1=15
avgit(isim1,8+ihistory)=avgit(isim1,8+ihistory)+ dtmp
if(iar.ge.7 .and. iar.le.9) avgit(isim1,12+iar) =

     &                              avgit(isim1,12+iar)+ strue(iyr,iar)
avgit(isim1,8)=avgit(isim1,8)+ 0.1

if(iar.eq.7 .and. ihistory.eq.1) then
avgit(isim,1)=avgit(isim,1)+1.0
avgit(isim,2)=avgit(isim,2)+rmort
avgit(isim,3)=avgit(isim,3)+delta
avgit(isim,4)=avgit(isim,4)+surviv
avgit(isim,5)=avgit(isim,5)+conv
avgit(isim,6)=avgit(isim,6)+umai
endif

else
if(iar.eq.7) then
avgit(isim,7)=avgit(isim,7)+rmort
endif

endif
c-- future returns; do not include jacks (3 year-olds)
c---select randomly one of the maturity schedules

iselec=34*ran0(idum) + 1.0
do 20 iage = 4,6
rectmp = pmature(iselec,iar,iage)*prec(iyr,iar)
if(ihistory.ne.0 .and. recage(iyr,iar,iage).gt.0.0

     &                   .and. isim.le.5) then
rectmp=recage(iyr,iar,iage)

endif
strue(iyr+iage,iar)=strue(iyr+iage,iar) + rectmp

c if(iage.eq.3) zjack(iyr+iage,iar)=zjack(iyr+iage,iar) + rectmp
20      continue
c--calculate jeopardy stuff
c--criterion 1: Are spawners above threshold values

i1=ihistory
do 100 ifreq=1,40
x=ifreq*50.
if(ifreq.eq. 40) x=10000000.
if(strue(iyr,iar).le. x .and. isim.gt. 5) then

if(isim.le.29) then
nspwn(ifreq,iar,i1,1)=nspwn(ifreq,iar,i1,1)+1
endif
nspwn(ifreq,iar,i1,2)=nspwn(ifreq,iar,i1,2)+1

endif
c--- criterion 2: recovery standard, 8-year geometric mean spawners

if(isim.eq.29) then
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geo=0.0
do 129 jsim=22,29
jyr=istart+jsim
geo=geo+log(strue(jyr,iar)+.000001)

129             continue
geo=exp(geo/8.)
if(geo.le. x ) then
nspwn(ifreq,iar,i1,3)=nspwn(ifreq,iar,i1,3)+1
endif

endif
if(isim.eq.53) then

geo=0.0
do 153 jsim=46,53
jyr=istart+jsim
geo=geo+log(strue(jyr,iar)+.000001)

153             continue
geo=exp(geo/8.)
if(geo.le. x ) then
nspwn(ifreq,iar,i1,4)=nspwn(ifreq,iar,i1,4)+1
endif

endif
c--calculate once per call, some frequencies of parameters

if(isim.eq.100.and. i1.eq.0 .and. iar.eq.7) then
do 154 jpar=1,np
deltmp=.1
deltmp=max(.1*abs(savest(jpar)),deltmp)
deltmp=deltmp*(ifreq-15) +savest(jpar)
if(ifreq.eq.40) deltmp=10000.0
if(theta(jpar).le.deltmp) then
nspwn(ifreq,jpar,i1,5)=nspwn(ifreq,jpar,i1,5)+1
endif

154             continue
endif

100     continue
11      continue
10      continue
c       write(*,110) ihistory,(strue(iyr,j),j=7,13)
c       write(8,110) ihistory,(strue(iyr,j),j=7,13)
c       write(*,110) iyr,(amean(j),j=1,6)
c       write(*,110) iyr,(bcoef(j),j=1,6)

return
end


